赖焕新 教授 博士生导师
Email: hlai@ecust.edu.cn
Add: 上海市徐汇区梅陇路130号ok138cn太阳集团古天乐401信箱 (邮编: 200237)
研究生招生
1) 专硕: 机械、能源动力
2) 学硕: 机械工程、动力工程与工程热物理
3) 博士/直博/硕博: 动力工程与工程热物理
个人简介:
2006.09-现 在,ok138cn太阳集团古天乐,教授.
2004.10-2006.08,University of Southampton,Research Fellow,Visiting Lecturer.
2003.03-2004.09,Queen Mary University of London,Postdoc Research Assistant.
2000.03-2003.02,Nottingham Trent University,PhD (in Thermal Fluids and CFD).
1997.12-2000.02,中国科学院工程热物理研究所,博士后;副研究员(1999.12).
1994.09-1997.11,华中理工大学,博士:流体机械.
1991.09-1994.08,西安交通大学,硕士:流体机械.
1987.09-1991.08,华中工学院 / 华中理工大学(华中科技大学),学士:流体机械.
研究方向
◆ 流体机械(泵、风机、压缩机、阀门;流场模拟与诊断、节能减排、流体噪声的控制技术)
◆ 流动与传热问题的高性能计算(先进的数值算法、CFD软件设计)
◆ 新能源科学与技术基础(锂电池热管理、燃料电池水热管理、风力机气动力学 等)
◆ 湍流与流体声学(大涡模拟、航空发动机喷流噪声的基础研究)
◆ 工程流体力学的交叉科学问题(能源化工多相流、自由表面、多孔介质、非牛顿流体 等)
讲授课程
本科生:工程流体力学,32学时.
硕士生:高等流体力学,32学时.
博士生:流动与传热数值计算,32学时.
承担科研项目
◆ 国家自然科学基金项目:“亚音速圆口热喷射流动及其声源机理的研究”(51976061),项目申请者,ok138cn太阳集团古天乐,2020.1-2023.12。
◆ 国家自然科学基金项目:“基于喷管壁面多孔处理的喷流噪声被动控制研究”(51576067),项目申请者,ok138cn太阳集团古天乐,2016.1-2019.12。
◆ 国家自然科学基金项目:“大曲率弯道中剪切稀化非牛顿流体的湍流流动研究”(51176048),项目申请者,ok138cn太阳集团古天乐,2012.1-2015.12。
◆ 国家自然科学基金项目:“包含多孔结构的横流风机的涡声关系与降噪机理的研究”(50876031),项目申请者,ok138cn太阳集团古天乐,2009.1-2011.12。
◆ 国家自然科学基金项目:“叶列非定常耦合的轴流风机间隙涡流损失及气动噪声研究”(59876042),项目申请者,中国科学院工程热物理研究所,1998.1-2000.12。
◆ 教育部博士点科学基金项目:“低速流体机械的涡声关系及气动噪声控制的研究”(20070251017),项目申请者,ok138cn太阳集团古天乐,2008.1-2010.12。
◆ 教育部留学回国人员启动基金项目:“贯流风机内部流动与旋涡特性的研究”,项目申请者,ok138cn太阳集团古天乐,2007.1-2009.12。
◆ 上海市“浦江人才计划”项目:“一种新型的气动噪声控制方法研究”(07PJ14025),项目申请者,ok138cn太阳集团古天乐,2007.9-2009.9。
◆ 上海市教委科研创新重点项目:“叶轮机械动静干涉的『旋涡-声学』耦合机制的研究”,项目申请者,ok138cn太阳集团古天乐,2010.1-2011.12。
◆ 化学工程联合国家重点实验室开放基金项目:“高粘/非牛顿流体垂直降膜的动力学行为及其传递特性的研究”,项目申请者,ok138cn太阳集团古天乐,2010.1-2012.12。
获奖成果
上海市科学技术进步一等奖(2017)
代表性著作
◆ Wu Z, Lin C, Lai H*. 2024. Prediction of zinc evaporation in the snout of high-temperature hot-dip zinc-aluminum-magnesium coating line. Case Studies in Thermal Engineering, 62, 105174. doi: 10.1016/j.csite.2024.105174
◆ Liu Q, Lai H*. 2024. Correlation-enhanced short-time analysis of coherent structures for acoustic bursts in subsonic jets. Physics of Fluids, 36, 085120. doi: 10.1063/5.0217874
◆ Dai W, Lai H*. 2024. Comparative study of flow-channel layout schemes in liquid cooling plates of a prismatic battery module. Applied Thermal Engineering 236, 121501
◆ Liu Q, Lai H*. 2023. Kinematic analyses of wave-packet structures in non-isothermal jet flows: Effects of length scales. Physics of Fluids 35, 115142. doi: 10.1063/5.0172456
◆ Xu Z, Lai H*. 2023. Comparison of Cavitation in Two Axial-Flow Water Jet Propulsion Pumps. Processes, 11, 2137.
◆ Liu Q, Lai H*. 2022. Correlation analysis of flow and sound in non-isothermal subsonic jets based on large eddy simulations. Physics of Fluids, 34, 045125; doi: 10.1063/5.0086857 (SCI/EI)
◆ Liu Q, Lai H*. 2021. Coherent Structures in a Compressible Turbulent Plane Jet. Physics of Fluids, 33, 105109; doi: 10.1063/5.0062963
◆ Xu C, Lai H*. 2021. Study of multi-mode forcing effects on coherent structures of flow transition in a compressible jet. AIP Advances , 11, 115105; doi: 10.1063/5.0067533 (SCI/EI)
◆ Liu Q, Lai H*. 2021. Flow Developing Properties of a Compressible Parallel Jet. AIP Advances, Vol.11, No.2, 025214; doi: 10.1063/5.0036662 (SCI/EI)
◆ Liu Z, Zhang H*, Lai H*. 2021. Fluid flow effects on the degradation kinetics of bioresorbable polymers. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING. 2021, VOL. 24, NO. 10, 1073–1084. (SCI/EI)
◆ Meng Q, Lai H*. 2021. Numerical Study of Turbulence and Noise in Chevrons Nozzles at the Mach Number Equal to 0.25. Fluid Dynamics, 2021, Vol. 56, No. 5, pp. 745–753. (SCI/EI)
◆ Xie L, Huang Y, Lai H*. 2020. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module. Applied Thermal Engineering, 178: 115599 (SCI/EI)
◆ Huang Y, Lai H*. 2019. Effects of discharge rate on electrochemical and thermal characteristics of LiFePO4/ graphite battery. Applied Thermal Engineering, 157: 113744. (SCI/EI)
◆ Liu Q, Dong Y, Lai H*. 2019. Large Eddy Simulation of Compressible Parallel Jet Flow and Comparison of Four Subgrid-Scale Models. Journal of Applied Fluid Mechanics. 12(5): 1599-1614. (SCI/EI).
◆ Han X, Huang Y, Lai H*. 2019. Electrochemical-Thermal Coupled Investigation of Lithium Iron Phosphate Cell Performances under Air-Cooled Conditions. Applied Thermal Engineering, 147: 908-916. (SCI/EI)
◆ Shi Z, Lin J, Lai H*. 2019. Study of Passive Control of Jet Noise by Blind Holes on Nozzle Inner Wall. In: Zhou Y., Kimura M., Peng G., Lucey A., Huang L. (eds) Fluid-Structure-Sound Interactions and Control. FSSIC 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. (DOI: 10.1007/978-981-10-7542-1_52).
◆ Lin J, Shi Z and Lai H*. 2018. Numerical Study of Controlling Jet Flow and Noise using Pores on Nozzle Inner Wall. Journal of Thermal Science. 27(2): 146-156. (SCI/EI).
◆ Nguyen XL and Lai H*. 2017. The Simulation of non-Newtonian Power-law Fluid Flow in a Centrifugal Pump Impeller. Journal of the Chinese Society of Mechanical Engineers. 38(4): 381-390. (SCI/EI).
◆ Shi Z, Lin J and Lai H*. 2017. Study of passive control of jet noise by blind holes on nozzle inner wall. 4th Symposium on Fluid-Structure-Sound Interactions and Control. August 21– 24, 2017, Tokyo, Japan.
◆ Li Y, Yuan S and Lai H*. 2017. Numerical Study of Unsteady Flows with Cavitation in a High-Speed Micro Centrifugal Pump. Journal of Thermal Science, 26(1): 18-24. (SCI/EI).
◆ Ma K and Lai H*. 2016. Comparison of Five Two-equation Turbulence Models for Calculation of Flow in 90° Curved Rectangular Ducts. Journal of Applied Fluid Mechanics. 9(6): 2917-2931. (SCI/EI).
◆ Chen J and Lai H*. (2015). Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow of a Micro-Axial Fan Rotor. Journal of Thermal Science. 24(4): 334-343.(SCI/EI).
◆ Ma K, Yuan S, Chang H and Lai H*. (2014). Experimental Study of Pseudoplastic Fluid Flows in a Square Duct of Strong Curvature, Journal of Thermal Science. 23(4): 359−367.(SCI/EI).
◆ Lai H*, Zhang H, Yao J and Xing G. (2012). Noise Controlling Using Porous Stabilizers in a Cross-Flow Fan. ASME paper GT2012-68130.
◆ Lai H* and Xing G. (2011). A Pressure-Correction Procedure with High-Order Schemes, International Journal of Numerical Methods for Heat and Fluid Flow. 21(3):331-352.(SCI/EI).
◆ Lai H*, Wang M, Yun C and Yao J. (2011). Attenuation of cross-flow fan noise using porous stabilizers. International Journal of Rotating Machinery. Vol.2011. Article ID 528927, doi:10.1155/2011/528927.
◆ Li J X, Lai H and Tu S T (2009). Integral Solution of a Forced Laminar Boundary Layer over an Isothermal Plate Embedded in a Porous Medium. International Journal of Nonlinear Sciences & Numerical Simulation,10(5):615-622. (SCI/EI).
◆ Lai H* and Luo K H. (2008). Large-Eddy Simulation and Control of Cavity Aeroacoustics Using Porous Media Inserts.Flow, Turbulence and Combustion ,80:375-391.(SCI/EI).
◆ Lai H* and Luo K H. (2007). A three-dimensional hybrid LES-acoustic analogy method for predicting open cavity noise. Flow, Turbulence and Combustion, 79(1):55-82.(SCI/EI).
◆ Lai H*, Yan Y and Gentle C R (2007). Numerical simulation of time-dependent heat and fluid flows inside and around single rising bubbles using a moving boundary-fitted mesh system. International Journal of Numerical Methods for Heat & Fluid Flow ,17(4):418-438.(SCI/EI).
◆ Lai H* and Luo K H. (2006). Large-Eddy Simulation and Control of Cavity Aeroacoustics. Conference on Turbulence and Interactions – TI2006, Porquerolles - France, May 29- June 2, 2006.
◆ Luo K H and Lai H. (2006). A hybrid LES-Acoustic analogy method for computational aeroacoustics.in Direct and Large-Eddy Simulation VI: ERCOFTAC SERIES (EUROPEAN RESEARCH COMMUNITY ON FLOW, TURBULENCE AND COMBUSTION). Vol. 10, PP: 537-544, DOI: 10.1007/978-1-4020-5152-2_62. (SCI/EI).
◆ Lai H and Luo K H. (2005). Acoustic Source and Near Field of Three-Dimensional Compressible Flow over an Open Cavity. AIAA-Paper-2005-2805.
◆ Lai H and Luo K H. (2005). Three-Dimensional Effects in Compressible Open Cavity Flows, Fourth International Symposium on Turbulence and Shear Flow Phenomena, June 27-29, 2005, Williamsburg, Virginia, USA. NASA TSFP4-287.
◆ Lai H* and Luo K.H. (2004). Direct numerical simulation of three-dimensional compressible flows in an open cavity. in RECENT ADVANCES IN FLUID MECHANICS, PP. 790-793, TSINGHUA UNIVERSITY PRESS. (SCI).
◆ Lai H, Zhang H and Yan Y. (2004). Numerical Study of Heat and Mass Transfer in Rising Inert Bubbles Using a Conjugate Flow Model. Numerical Heat Transfer, Part A, 46(1):79-98. (SCI/EI).
◆ Lai H, Yan Y and Gentle C R. (2003). Calculation Procedure for Conjugate Viscous Flows About and Inside Single Bubbles. Numerical Heat Transfer, Part B, 43(3):241-265. (SCI/EI).
◆ Yan Y Y, Gentle C R and Lai H. (2003). Recent advances in computational modelling of multi-phase transport phenomena in energy engineering. In ENERGY AND ENVIRONMENT, Vol. 1, PP. 599-606. (SCI).
◆ Lai H, Yan Y and Smith J. (2002). A Calculation Procedure with Multi-Block Iteration and Moving Mesh for Heat and Fluid Flows in Complex Time-Dependent Geometries. International Journal of Numerical Methods for Heat & Fluid Flow, 12(2):106-125. (SCI/EI).
◆ Lai H, Yan Y and Gentle C R. 2002. Numerical Study of Conjugate Steady Viscous Flow About and Inside a Spherical Bubble. Heat Transfer 2002, Proceedings of the Twelfth International Heat Transfer Conference, PP.581- 586, ELSEVIER, ISBN: 2-84299-307-1IHT.
◆ Yan Y, Lai H, Gentle C R and Smith J M. (2002). Numerical Analysis of Fluid Flows inside and around A Liquid Drop Using An Incorporation of Multi-Block Iteration and Moving Mesh. Transactions of The Institution of Chemical Engineers, Chemical Engineering Research and Design, Part A, 80(A3):325-331. (SCI/EI).
◆ Lai H, Yan Y, Gentle CR, and Smith J M. 2001, “Numerical Analysis of Fluid Flow and Heat Transfer in Complex Time-Dependent Geometries”, 7th UK National Conference on Heat Transfer, Sept. 2001, Nottingham.
◆ Lai H* and Yan Y. (2001). The effect of choosing dependent variables and cell-face velocities on convergence of the SIMPLE algorithm using non-orthogonal grids. International Journal of Numerical Methods for Heat & Fluid Flow, 11(5): 524-546. (SCI/EI).