莫润伟
E-mail: rwmo@ecust.edu.cn
职位:特聘教授
地址:上海市徐汇区梅陇路130号
研究生招生专业:080700 动力工程及工程热物理 080202 机械电子工程 085800 能源动力
个人简介:
2015年于哈尔滨工业大学获得工学博士学位,2015-2020年先后在新加坡科技设计大学、美国加州大学洛杉矶分校从事科学研究工作,并于2020年回国任职于ok138cn太阳集团古天乐。当选英国材料、矿物与采矿学会会士(FIMMM)、英国皇家航空学会会士(FRAeS)、国际先进材料学会会士(FIAAM),先后入选第十批上海市海外高层次人才计划(长期创新)、上海市浦江人才计划(A类)、能源与环境青年人才计划(储能技术)。主持/承担了国家科技部重点研发计划项目、美国能源部ARPA-E项目、新加坡政府MOE项目、上海市基础研究特区项目以及上海市海外高层次人才引进项目等十余项。至今撰写专著8部(章)以及在 Nat. Commun,Adv. Mater,Adv. Energy Mater, ACS Nano,Nano Lett,Adv. Funct. Mater,Energy Storage Mater,Chem. Eng. J 等国际权威期刊上发表学术论文60余篇,授权/申请专利15项。担任Vin Future全球科技奖提名专家、新质力材料发展联盟常务理事、中国能源学会专家委员会新能源专家组委员、全国材料与器件科学家智库能源材料与器件专家委员会委员、美国Sigma Xi科学研究荣誉学会正式成员。并且受邀担任《eScience》、《EcoMat》、《Carbon Capture Science & Technology》、《Material Futures》等多个期刊编委/青年编委/专刊客座编辑。
研究方向
主要从事新能源材料与器件方面的研究工作。面向国家能源的重大战略需求,立足碳达峰、碳中和的历史机遇,瞄准电荷高效存储与输运的结构调控科学问题,长期致力于新型能源材料、先进制造技术及智能系统集成研究,发展能源材料——先进制造——器件集成——智能检测的关键技术,取得了系列创新性科研成果,并探索新能源领域的应用探索和成果转化。研究方向包括:
(1)先进储能材料与器件;
(2)智能传感与柔性电子设备;
(3)CO2高值转化与固碳储能;
(4)固态储能与智能电池。
获奖成果
研究成果:
(1)中国发明协会发明创新二等奖,2024年 (第一完成人)
(2)中国产学研合作创新奖,2023年 (第一完成人)
(3)IAAM Scientist Medal Lecture, 2023年 (国际先进材料学会杰出科学家奖)
(4)Carbon Capture Future Leader Award,2023年 (碳捕获未来领袖奖)
(5)IChemE CCST Young Inverstigator Award,2023年 (青年研究奖)
(6)能源与环境青年先锋称号奖, 2023年 (中华环境保护基金会/中国能源学会/北京能源与环境学会)
育人成果:
(1)第十七届全国大学生节能减排社会实践与科技竞赛一等奖
(2)第六届全国大学生可再生能源优秀科技作品竞赛一等奖
(3)第六届全国大学生可再生能源优秀科技作品竞赛优秀指导教师奖
(4)第十五届全国大学生过程装备实践与创新大赛长三角赛区三等奖
(5)第二届创青春中国青年碳中和创新创业大赛华东赛区优胜奖
(6)上海市优秀毕业生称号
代表性著作
学术论文:
[1] Structure engineering and heteroatom doping-enabled high-energy and fast-charging dual-ion batteries. Chem. Eng. J, 2024, 490, 151537. (通讯作者)
[2] A Microstructure-Enhanced Dual-Mode LC Sensor with a PSO-BP Algorithm for Precise Detection of Temperature and Pressure. Adv. Funct. Mater. 2024, 2408198. (通讯作者)
[3] Autonomous self-healing strategy for flexible fiber lithium-ion battery with ultra-high mechanical properties and volumetric energy densities. Chem. Eng. J, 2024, 496, 154153. (通讯作者)
[4] Covalently bonded MXene@Antimonene heterostructure anode for fast lithium-ion storage. Chem. Eng. J, 2024, 485, 149837. (通讯作者)
[5] High-efficiency thermal reduction of CO2 to high-valued carbon nanotubes. Chem. Eng. Sci. 2024, 295, 120179. (通讯作者)
[6] High performance sodium ion anodes based on Sn4P3 encapsulated within amphiphilic graphene tubes. Adv. Energy Mater, 2022, 12, 2102345. (通讯作者)
[7] Graphite-embedded lithium iron phosphate for high-power-energy cathodes. Nano Lett, 2021, 21, 2572. (通讯作者)
[8] High-conductivity-dispersibility graphene made by catalytic exfoliation of graphite for lithium-ion battery. Adv. Funct. Mater, 2021, 31, 2007630. (通讯作者)
[9] 3D holey-graphene frameworks cross-linked with encapsulated mesoporous amorphous FePO4 nanoparticles for high power lithium-ion batteries. Chem. Eng. J, 2021, 417, 128475. (通讯作者)
[10] Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy density. Nat. Commun, 2020, 11, 1374. (第一作者)
[11] Hollow germanium nanocrystals on reduced graphene oxide for superior stable lithium-ion half cell and germanium (lithiated)-sulfur battery. Energy Storage Mater, 2020, 26, 414. (第一作者)
[12] Hierarchical graphene-scaffolded mesoporous germanium dioxide nanostructure for high-performance flexible lithium-ion batteries. Energy Storage Mater, 2020, 29, 198. (通讯作者)
[13] High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat. Commun, 2019, 10, 1474. (第一作者)
[14] Anchored monodispersed silicon and sulfur nanoparticles on graphene for high-performance lithiated silicon-sulfur battery. Energy Storage Mater, 2019, 23, 284. (第一作者)
[15] Three-dimensional double-walled ultrathin graphite tube conductive scaffold with encapsulated germanium nanoparticles as a high-areal-capacity and cycle-stable anode for lithium-ion battery. ACS Nano, 2019, 13, 7536. (第一作者)
[16] 3D nitrogen-doped graphene foam with encapsulated germanium/ nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun, 2017, 8, 13949. (第一作者)
[17] Pushing the limits: 3D layer-by-layer assembled composites for cathodes with 160 C discharge rates. ACS Nano, 2015, 9, 5009. (第一作者)
[18] Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater, 2014, 26, 2084. (第一作者)
专著(章节):
[1] "Application of Silicon-Based Composite in Batteries", Runwei Mo, in Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Appications, edited by Sabu Thomas, Mazaher Ahmadi, Tuan Anh Nguyen, Nirav Joshi, and Ghulam Yasin (Elsevier Book, ISBN: 978-0-12-824007-6, 2022), Chapter 7.
[2] "Graphene-Sulfur Composite Cathodes", Runwei Mo, in Lithium-Sulfur Batteries, edited by Ram Gupta, Tuan Anh Nguyen, Huaihe Song and Ghulam Yasin (Elsevier Book, ISBN: 978-0-323-91934-0, 2022), Chapter 13.
[3] "Fundamentals and Recent Advancements in Li-Ion Batteries", Runwei Mo, in Handbook of Energy Materials, edited by Ram Gupta (Springer Book, ISBN: 978-981-16-4480-1, 2022), Chapter 19.
[4] "Flexible Metal-Air Batteries", Runwei Mo, in Metal-Air Batteries: Progress and Perspective, edited by Ram Gupta (CRC Book, 2023), Chapter 24.
[5] "Metal Phosphates/Phosphonates for fuel cells", Runwei Mo, in Metal Phosphates and Phosphonates: Fundamental to Advanced Emerging Applications, edited by Ram K. Gupta (Springer Book, ISBN: 978-3-031-27062-8, 2023), Chapter 10.
[6] "3D Graphene for Metal–Air Batteries", Runwei Mo, in 3D Graphene Fundamentals, Synthesis, and Emerging Applications, edited by Ram K. Gupta (Springer Book, ISBN 978-3-031-36248-4, 2023), Chapter 13.
[7] "Hydrogels for Flexible/Wearable Batteries", Runwei Mo, in Hydrogels: Fundamentals to Advanced Energy Applications, edited by Anuj Kumar and Ram K. Gupta, (Springer Book), 2023, Chapter 13.