赵鹏
E-mail:pengzhao@ecust.edu.cn
职位:
职称:副教授,硕士生导师
个人简介:
2003年获山东大学材料加工工程专业硕士学位,2007年12于上海交通大学获工学博士学位。2008年进入ok138cn太阳集团古天乐机械工程学院,历任博士后、讲师、副教授。多年来一直从事高温构件的结构完整性等方面的研究,主持国家自然科学基金(面上、青年)、国家重点研发计划(子任务)、上海市自然科学基金,国家重大科技专项(外协)等课题研究。主要在损伤/断裂、寿命预测及力学/本构模型等方面有着长期的研究和工作积累。
联系方式:
邮箱:pengzhao@ecust.edu.cn
电话:021-64251623/021-64252601
研究方向
[1] 高温构件的变形及损伤理论
[2] 结构的蠕变疲劳破坏及寿命预测技术
[3] 面向服役行为的数字孪生技术
承担科研项目
Ø 国家重点研发计划项目课题子任务,金属材料蠕变变形的数字孪生仿真方法,2022/01-2025/12,主持。
Ø 上海市自然科学基金,疲劳载荷作用下高温紧固件应力松弛机理及预测模型研究,2021/07-2024/06,主持。
Ø 国家重大科技专项/上海核工程研究设计院,2021/03-2022/03,主持。
Ø 国家自然科学基金面上项目,先进汽轮机转子蠕变疲劳交互作用下的微观不均匀形变及寿命模型,2015/01-2018/12,主持。
Ø 国家自然科学基金青年基金,超超临界机组高温部件棘轮损伤机理及寿命预测方法,2011/01-2013/12,主持。
获奖成果
代表性著作
专著:
轩福贞, 赵鹏.高温构件循环黏塑性行为及本构理论. 北京:科学出版社,2021
期刊论文:
[1] Liu Z, Gong JG*, Zhao P, Zhang XC, Xuan FZ*. Stress-controlled creep-fatigue interaction behavior and damage mechanism of 9-12%Cr steel at elevated temperature: effects of holding time and loading rate. International Journal of Fatigue, 2022, 156: 106684.
[2] Zhao P, Lu TY, Gong JG*, Xuan FZ, Berto F. A strain energy density based life prediction model for notched components in the low cycle fatigue regime. International Journal of Pressure Vessels and Piping, 2021, 193: 104458.
[3] Zhao P, Lu TY, Gong JG*, Xuan FZ. A modified stress field intensity approach for fatigue life prediction of components, Materials and Design, 2020, 190: 108537 (SCI/EI)
[4] Zhao P, Xuan FZ*, Wang C. A physically-based model of cyclic responses for martensitic steels with the hierarchical lath structure under different loading modes. Journal of the Mechanics and Physics of Solids. 2019, 124: 555-576. (SCI/EI)
[5] Wang C, Xuan FZ*, Zhao P, Guo SJ. Effect of cyclic loadings on stress relaxation behaviors of 9–12%Cr steel at high temperature. Mechanics of Materials, 2021, 156: 103787
[6] Niu TY, Zhao P, Zhu G, Gong JG*, Xuan FZ*. Stress state dependent creep damage behavior of 9–12% Cr steel notched components. Materials Science & Engineering A, 2021, 804: 140762
[7] Zhao P, Xuan FZ*, Wu DL. Cyclic softening behaviors of modified 9–12%Cr steel under different loading modes: Role of loading levels. International Journal of Mechanical Sciences, 2017, 131–132: 278–285
[8] Zhao P, Xuan FZ*. Ratchetting behavior of advanced 9–12% chromium ferrite steel under creep-fatigue loadings: Fracture modes and dislocation patterns. Materials Science and Engineering A, 2012, 539: 301–307
[9] Zhao P, Xuan FZ*. Microstructural stability and its effect on ratchetting effect of advanced 9-12%Cr ferrite steel at high temperature. Procedia Engineering, 2012, 27: 1588-1595.
[10] Zhao P, Xuan FZ*. Ratchetting behavior of advanced 9–12% chromium ferrite steel under creep-fatigue loadings. Mechanics of Materials, 2011, 43: 299-312
[11] Zhao P, Xuan FZ*. Study on Creep-Fatigue Damage Evaluation for Advanced 9-12% Chromium Steels under Stress Controlled Cycling. Acta Metallurgica Sinica (English Letters), 2011, 24: 148-154
[12] Zhang SL, Xuan FZ*, Guo SJ, Zhao P. The role of anelastic recovery in the creep-fatigue interaction of 9–12% Cr steel at high temperature. International Journal of Mechanical Sciences, 2017, 122: 95–103.
[13] Zhang JF,Xuan FZ*,Xiang YX,Zhao P. Effects of Cyclic and Monotonic Deformations on Nonlinear Ultrasonic Response of Austenitic Stainless Steel: A Comparative Study. Journal of Materials Engineering and Performance,2016, 25:2008-2016.
[14] Wu DL, Xuan FZ*,Guo SJ, Zhao P. Uniaxial mean stress relaxation of 9-12% Cr steel at high temperature: experiments and viscoplastic constitutive modeling. Internal journal of plasticity, 2016, 77: 156-73.
[15] Wu DL, Zhao P,Wang QQ, Xuan FZ*. Cyclic behavior of 9-12% Cr steel under different control modes in low cycle regime: A comparative study, Internal journal of fatigue, 2015, 70: 114-122.
[16] Zhang JF, Xuan FZ*,Xiang YX,Zhao P. Experimental insight into the cyclic softening/hardening behavior of austenitic stainless steel using ultrasonic higher harmonics. EPL, 2014, 108: 46004.